Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(6)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326375

RESUMEN

In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose homeostasis by secreting factors that affect the function of cells and tissues throughout the body, including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We developed an in vitro model wherein the functional human beta cell line EndoC-ßH1 was treated with conditioned media from human adipose tissues. By using RNA-sequencing and western blotting, we determined that a conditioned medium derived from omental stromal cells stimulates several pathways, such as STAT, SMAD and RELA, in EndoC-ßH1 cells. We also observed that upon treatment, the expression of beta cell markers decreased while dedifferentiation markers increased. Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse dedifferentiation, suggesting the implication of more than one pathway in this regulatory process. Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human omental adipose tissue signal human beta cells and modulate their identity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células del Estroma/metabolismo
2.
Am J Physiol Endocrinol Metab ; 320(2): E259-E269, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196296

RESUMEN

White adipose tissue (WAT) is a dynamic organ that plays crucial roles in controlling metabolic homeostasis. During development and periods of energy excess, adipose progenitors are recruited and differentiate into adipocytes to promote lipid storage capability. The identity of adipose progenitors and the signals that promote their recruitment are still incompletely characterized. We have recently identified V-set and transmembrane domain-containing protein 2A (VSTM2A) as a novel protein enriched in preadipocytes that amplifies adipogenic commitment. Despite the emerging role of VSTM2A in promoting adipogenesis, the molecular mechanisms regulating Vstm2a expression in preadipocytes are still unknown. To define the molecular mechanisms controlling Vstm2a expression, we have treated preadipocytes with an array of compounds capable of modulating established regulators of adipogenesis. Here, we report that Vstm2a expression is positively regulated by PI3K/mTOR and cAMP-dependent signaling pathways and repressed by the MAPK pathway and the glucocorticoid receptor. By integrating the impact of all the molecules tested, we identified signal transducer and activator of transcription 3 (STAT3) as a novel downstream transcription factor affecting Vstm2a expression. We show that activation of STAT3 increased Vstm2a expression, whereas its inhibition repressed this process. In mice, we found that STAT3 phosphorylation is elevated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression. Our findings identify STAT3 as a key transcription factor regulating Vstm2a expression in preadipocytes.NEW & NOTEWORTHY cAMP-dependent and PI3K-mTOR signaling pathways promote the expression of Vstm2a. STAT3 is a key transcription factor that controls Vstm2a expression in preadipocytes. STAT3 is activated in the early phases of WAT development, an effect that strongly associates with Vstm2a expression.


Asunto(s)
Adipocitos/fisiología , Adipogénesis/genética , Proteínas de la Membrana/fisiología , Factor de Transcripción STAT3/fisiología , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/genética , Transducción de Señal/genética
3.
Proc Natl Acad Sci U S A ; 116(10): 4285-4290, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30770439

RESUMEN

Precise modulation of hepatic glucose metabolism is crucial during the fasting and feeding cycle and is controlled by the actions of circulating insulin and glucagon. The insulin-signaling pathway requires insulin receptor substrate 1 (IRS1) and IRS2, which are found to be dysregulated in diabetes and obesity. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1A) is a fasting-induced transcriptional coactivator. In nonalcoholic fatty liver disease and in patients with type 2 diabetes, low hepatic PGC1A levels are associated with insulin resistance. However, how PGC1A activity impacts the hepatic insulin-signaling pathway is still unclear. We used gain- and loss-of-function models in mouse primary hepatocytes and measured hepatocyte insulin response by gene and protein expression and ex vivo glucose production. We found that the PGC1A level determines the relative ratio of IRS1 and IRS2 in hepatocytes, impacting insulin receptor signaling via protein kinase B/AKT (AKT). PGC1A drove the expression of IRS2 downstream of glucagon signaling while simultaneously reducing IRS1 expression. We illustrate that glucagon- or PGC1A-induced IRS2 expression was dependent on cAMP Response Element Binding Protein activity and that this was essential for suppression of hepatocyte gluconeogenesis in response to insulin in vitro. We also show that increased hepatic PGC1A improves glucose homeostasis in vivo, revealing a counterregulatory role for PGC1A in repressing uncontrolled glucose production in response to insulin signaling. These data highlight a mechanism by which PGC1A plays dual roles in the control of gluconeogenesis during the fasting-to-fed transition through regulated balance between IRS1 and IRS2 expression.


Asunto(s)
Ayuno , Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Regulación de la Expresión Génica , Glucagón/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Hepatocitos/metabolismo , Homeostasis , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Resistencia a la Insulina , Hepatopatías/metabolismo , Masculino , Ratones , Modelos Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
4.
Front Physiol ; 9: 1327, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356919

RESUMEN

Obesity and ensuing disorders are increasingly prevalent in young populations. Prolonged exposure to high-fat diets (HFD) and excessive lipid accumulation were recently suggested to impair skeletal muscle functions in rodents. We aimed to determine the effects of a short-term HFD on skeletal muscle function in young rats. Young male Wistar rats (100-125 g) were fed HFD or a regular chow diet (RCD) for 14 days. Specific force, resistance to fatigue and recovery were tested in extensor digitorum longus (EDL; glycolytic) and soleus (SOL; oxidative) muscles using an ex vivo muscle contractility system. Muscle fiber typing and insulin signaling were analyzed while intramyocellular lipid droplets (LD) were characterized. Expression of key markers of lipid metabolism was also measured. Weight gain was similar for both groups. Specific force was decreased in SOL, but not in EDL of HFD rats. Muscle resistance to fatigue and force recovery were not altered in response to the diets. Similarly, muscle fiber type distribution and insulin signaling were not influenced by HFD. On the other hand, percent area and average size of intramyocellular LDs were significantly increased in the SOL of HFD rats. These effects were consistent with the increased expression of several mediators of lipid metabolism in the SOL muscle. A short-term HFD impairs specific force and alters lipid metabolism in SOL, but not EDL muscles of young rats. This indicates the importance of clarifying the early mechanisms through which lipid metabolism affects skeletal muscle functions in response to obesogenic diets in young populations.

5.
Int J Dev Biol ; 62(11-12): 857-864, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30604855

RESUMEN

The HOX genes are transcription factors that are expressed in coordinated spatiotemporal patterns to ensure normal development. Ectopic expression may instead lead to the development and progression of tumors. Genetic polymorphisms in the regions of four HOX gene clusters were tested for association with lung cancer in 420 cases and 3,151 controls. The effect of these variants on lung gene expression (expression quantitative trait loci, eQTL) was tested in a discovery set of 409 non-tumor lung samples and validated in two lung eQTL replication sets (n = 287 and 342). The expression levels of HOXB2 were evaluated at the mRNA and protein levels by quantitative real-time PCR and immunohistochemistry in paired tumor and non-tumor lung tissue samples. The most significant SNP associated with lung cancer in the HOXB cluster was rs10853100 located upstream of the HOXB cluster. HOXB2 was the top eQTL-regulated gene with several polymorphisms associated with its mRNA expression levels in lung tissue. This includes the lung cancer SNP rs10853100 that was significantly associated with HOXB2 expression (P=3.39E-7). In the lung eQTL discovery and replication sets, the lung cancer risk allele (T) for rs10853100 was associated with lower HOXB2 expression levels. In paired normal-tumor samples, HOXB2 mRNA and protein levels were significantly reduced in tumors when compared to non-tumor lung tissues. Genetic variants in the HOXB cluster may confer susceptibility to lung cancer by modulating the expression of HOXB2 in the lung.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Neoplasias Pulmonares/genética , Pulmón/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Anciano , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Factores de Transcripción/metabolismo
6.
Mol Metab ; 6(5): 447-458, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28462079

RESUMEN

OBJECTIVE: The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulates growth and metabolism. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to reduce their activity. Whether DEPTOR loss affects metabolism and organismal growth in vivo has never been tested. METHODS: We have generated a conditional transgenic mouse allowing the tissue-specific deletion of DEPTOR. This model was crossed with CMV-cre mice or Albumin-cre mice to generate either whole-body or liver-specific DEPTOR knockout (KO) mice. RESULTS: Whole-body DEPTOR KO mice are viable, fertile, normal in size, and do not display any gross physical and metabolic abnormalities. To circumvent possible compensatory mechanisms linked to the early and systemic loss of DEPTOR, we have deleted DEPTOR specifically in the liver, a tissue in which DEPTOR protein is expressed and affected in response to mTOR activation. Liver-specific DEPTOR null mice showed a reduction in circulating glucose upon fasting versus control mice. This effect was not associated with change in hepatic gluconeogenesis potential but was linked to a sustained reduction in circulating glucose during insulin tolerance tests. In addition to the reduction in glycemia, liver-specific DEPTOR KO mice had reduced hepatic glycogen content when fasted. We showed that loss of DEPTOR cell-autonomously increased oxidative metabolism in hepatocytes, an effect associated with increased cytochrome c expression but independent of changes in mitochondrial content or in the expression of genes controlling oxidative metabolism. We found that liver-specific DEPTOR KO mice showed sustained mTORC1 activation upon fasting, and that acute treatment with rapamycin was sufficient to normalize glycemia in these mice. CONCLUSION: We propose a model in which hepatic DEPTOR accelerates the inhibition of mTORC1 during the transition to fasting to adjust metabolism to the nutritional status.


Asunto(s)
Glucemia/metabolismo , Ayuno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/metabolismo , Animales , Citocromos c/metabolismo , Glucógeno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Cell Rep ; 18(1): 93-106, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28052263

RESUMEN

Despite progress in our comprehension of the mechanisms regulating adipose tissue development, the nature of the factors that functionally characterize adipose precursors is still elusive. Defining the early steps regulating adipocyte development is needed for the generation of tools to control adipose tissue size and function. Here, we report the discovery of V-set and transmembrane domain containing 2A (VSTM2A) as a protein expressed and secreted by committed preadipocytes. VSTM2A expression is elevated in the early phases of adipogenesis in vitro and adipose tissue development in vivo. We show that VSTM2A-producing cells associate with the vasculature and express the common surface markers of adipocyte progenitors. Overexpression of VSTM2A induces adipogenesis, whereas its depletion impairs this process. VSTM2A controls preadipocyte determination at least in part by modulating BMP signaling and PPARγ2 activation. We propose a model in which VSTM2A is produced to preserve and amplify the adipogenic capability of adipose precursors.


Asunto(s)
Adipogénesis , Linaje de la Célula , Proteínas de la Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo Blanco/irrigación sanguínea , Tejido Adiposo Blanco/citología , Animales , Biomarcadores/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células 3T3 NIH , Neovascularización Fisiológica , PPAR gamma/metabolismo , Transducción de Señal
8.
Sci Rep ; 6: 37223, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27876792

RESUMEN

In response to cold, brown adipose tissue (BAT) increases its metabolic rate and expands its mass to produce heat required for survival, a process known as BAT recruitment. The mechanistic target of rapamycin complex 1 (mTORC1) controls metabolism, cell growth and proliferation, but its role in regulating BAT recruitment in response to chronic cold stimulation is unknown. Here, we show that cold activates mTORC1 in BAT, an effect that depends on the sympathetic nervous system. Adipocyte-specific mTORC1 loss in mice completely blocks cold-induced BAT expansion and severely impairs mitochondrial biogenesis. Accordingly, mTORC1 loss reduces oxygen consumption and causes a severe defect in BAT oxidative metabolism upon cold exposure. Using in vivo metabolic imaging, metabolomics and transcriptomics, we show that mTORC1 deletion impairs glucose and lipid oxidation, an effect linked to a defect in tricarboxylic acid (TCA) cycle activity. These analyses also reveal a severe defect in nucleotide synthesis in the absence of mTORC1. Overall, these findings demonstrate an essential role for mTORC1 in the regulation of BAT recruitment and metabolism in response to cold.


Asunto(s)
Aclimatación/fisiología , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Frío , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Adipocitos Marrones/citología , Tejido Adiposo Pardo/citología , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Mitocondrias/genética , Consumo de Oxígeno/fisiología
9.
Nat Commun ; 7: 12700, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27624942

RESUMEN

The identification of cancer-associated mutations in the tricarboxylic acid (TCA) cycle enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2) highlights the prevailing notion that aberrant metabolic function can contribute to carcinogenesis. IDH1/2 normally catalyse the oxidative decarboxylation of isocitrate into α-ketoglutarate (αKG). In gliomas and acute myeloid leukaemias, IDH1/2 mutations confer gain-of-function leading to production of the oncometabolite R-2-hydroxyglutarate (2HG) from αKG. Here we show that generation of 2HG by mutated IDH1/2 leads to the activation of mTOR by inhibiting KDM4A, an αKG-dependent enzyme of the Jumonji family of lysine demethylases. Furthermore, KDM4A associates with the DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of mTORC1/2. Depletion of KDM4A decreases DEPTOR protein stability. Our results provide an additional molecular mechanism for the oncogenic activity of mutant IDH1/2 by revealing an unprecedented link between TCA cycle defects and positive modulation of mTOR function downstream of the canonical PI3K/AKT/TSC1-2 pathway.


Asunto(s)
Glutaratos/metabolismo , Isocitrato Deshidrogenasa/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Astrocitos/metabolismo , Ciclo del Ácido Cítrico , Glioma/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfohidrolasa PTEN/genética , Ubiquitinación , Proteínas con Repetición de beta-Transducina/metabolismo
10.
Biochim Biophys Acta ; 1842(11): 2174-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25092171

RESUMEN

Cathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr(-/-)) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3months. When mice consume this diet for 6months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r=-0.535, P<0.0001) and LDL cholesterol (r=-0.559, P<0.0001), but not with HDL cholesterol (P=0.901) or triglycerides (P=0.186). Such inverse correlations with total cholesterol (r=-0.504, P<0.0001) and LDL cholesterol (r=-0.502, P<0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides.

11.
Atherosclerosis ; 229(2): 304-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23880180

RESUMEN

Mast cells (MCs) contribute to atherogenesis by releasing pro-inflammatory mediators to activate vascular cells and other inflammatory cells. This study examined whether MC activation or stabilization affects diet-induced atherosclerosis in low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. When Ldlr(-/-) mice consumed an atherogenic diet for 3 or 6 months, MC activation with compound 48/80 (C48/80) increased aortic arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels, whereas MC stabilization with cromolyn reduced these parameters. There were significant differences in arch intima and total lesion areas, and plasma total cholesterol, LDL, and triglyceride levels between C48/80-treated and cromolyn-treated mice. To examine a therapeutic application of cromolyn in atherosclerosis, we fed Ldlr(-/-) mice an atherogenic diet for 3 months followed by giving mice cromolyn for additional 3 months. Cromolyn did not affect aortic arch intima area, but significantly reduced lipid deposition in the thoracic-abdominal aortas. In aortic arches, however, cromolyn treatment significantly reduced lesion contents of Mac-3(+) macrophages, CD4(+) T cells, activated MCs, and lesion cell proliferation. While plasma total cholesterol and LDL levels increased and high-density lipoprotein (HDL) levels decreased from 3 months to 6 months of an atherogenic diet, cromolyn treatment decreased significantly plasma total cholesterol, LDL, and triglyceride levels and increased HDL levels above those of 3-month time point. These observations demonstrate that MC stabilization reduces lesion inflammation, ameliorates plasma lipid profiles, and may serve as a potential therapy for this cardiovascular disease.


Asunto(s)
Aterosclerosis/inmunología , Cromolin Sódico/farmacología , Lipoproteínas LDL/deficiencia , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Receptores de LDL/genética , Animales , Antiasmáticos/farmacología , Aterosclerosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/metabolismo , Triglicéridos/metabolismo , Vasculitis/tratamiento farmacológico , Vasculitis/inmunología , p-Metoxi-N-metilfenetilamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...